isolated jump - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

isolated jump - vertaling naar russisch

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

isolated jump      

математика

изолированный (функции)

jump up!         
WIKIMEDIA DISAMBIGUATION PAGE
Jump-up; Jump up music; Jumping up; Jump-Up; Jump up (disambiguation); Jump Up!; Jump Up! (album); Jump up; Jump Up (disambiguation)
садитесь! (в седло, в экипаж)
jumping up         
WIKIMEDIA DISAMBIGUATION PAGE
Jump-up; Jump up music; Jumping up; Jump-Up; Jump up (disambiguation); Jump Up!; Jump Up! (album); Jump up; Jump Up (disambiguation)

общая лексика

высадка

осаживание

расковка

Definitie

jump-up
¦ noun
1. a Caribbean dance or celebration.
2. Austral. informal an escarpment.

Wikipedia

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.

Vertaling van &#39isolated jump&#39 naar Russisch